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Abstract—We have identified an anionic condensation and fragmentation sequence from the coupling of 7-azabicy-
clo[2.2.1]heptenones with aldehydes. This reaction leads to the stereoselective formation of disubstituted 3-pyrrolines as are
present in a wide array of bioactive molecules. © 2002 Elsevier Science Ltd. All rights reserved.

Their presence in a variety of biologically active targets
have made substituted pyrroles and pyrrolines popular
targets for chemical synthesis.1 Our interest in these
agents came shortly after our discovery that oxabicy-
clo[2.2.1]heptenones undergo a condensation and frag-
mentation sequence resulting in the formation of
dihydrofurans when subjected to aldehydes and anionic
conditions (Eq. (1)).2

(1)

By applying the reaction outlined in Eq. (1) to the
analogous nitrogen containing system (i.e. 7-azabicy-
clo[2.2.1]heptenones), we reasoned that we would be

able to access potentially important 3-pyrrolines includ-
ing pyrroline containing natural products.3 Described
herein is the realization of this goal through the anionic
coupling of 7-azabicyclo[2.2.1]heptenone 8 with substi-
tuted aldehydes.

In order to examine the aforementioned anionic cou-
pling chemistry, we required ready access to 7-azabicy-
clo[2.2.1]heptenones and turned to pyrrole Diels–Alder
chemistry.4 In an analogous fashion to our approach to
the chemical synthesis of 1, Boc pyrrole 3 was con-
densed with bromo-propynoate 45 to give 7-azabicy-
clo[2.2.1]heptadiene 6.6 Hydrolysis of the vinyl bromide
then provided coupling precursor 8. In an effort to
avoid the use of 4,7 we also carried out the cycloaddi-
tion between 3 and alkynyl sulphone 58 to generate 7.
Hydrolysis of the vinyl sulphone was accomplished on
large scale by sequentially exposing 7 to Et2NH/NEt3,
KOt-Bu,9 and acid to give 8 in 74% yield (Scheme 1).

Scheme 1. Synthesis of azabicyclo[2.2.1]heptenone 8.
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With 7-azabicyclo[2.2.1]heptenone 8 in hand, we exam-
ined its anionic condensation chemistry with aldehydes.
Our efforts commenced with the anionic condensation
of 8 with benzaldehyde in the presence of NaH (Table
1, entry 1). This resulted in the generation of 3-pyrro-
line 9 in 76% yield as a 2.5:1, E :Z mixture of olefin
isomers.13 By way of comparison, the anionic coupling
of the corresponding 7-oxabicyclo[2.2.1]heptenone gave
the dihydrofuran analogous to 9 in 57% yield.10 We
were pleased to find that other aryl substituted alde-
hydes were also amenable to this transformation. That
is, when subjected to 8 and NaH, furfural and anisalde-
hyde gave 3-pyrrolines 10 and 11 in 87 and 70% yields,
respectively (entries 2 and 3). The reaction was not
limited to aryl aldehydes; the coupling of 8 with
propanal and isobutyraldehyde gave 12 and 13, respec-
tively (entries 4 and 5). Interestingly, the major olefin
isomer was reversed in these latter two reactions.11

Ethyl glyoxylate was also utilized in the coupling reac-
tion with 8 to give 1413 in 83% yield as a 4:1, Z :E
mixture of olefin isomers (entry 6). The transformation
of 8 into the corresponding pyrroline appears to be
somewhat sensitive to steric inhibition; attempted con-
densation of 8 with pivaldehyde did not give the
expected pyrroline but instead resulted in the formation
of alkylated 7-azabicyclo[2.2.1]heptenone upon quench-
ing the anion of 8 with MeI (entry 7).

Our current working hypothesis for the azabicy-
clo[2.2.1]heptenone to pyrroline transformation is out-
lined in Scheme 2 for the condensation with
benzaldehyde. We believe that the initial aldolate
undergoes a cyclization reaction onto the pendant
ketone to give oxetane intermediate 15. Anionic frag-
mentation relieves the ring strain present in 15 and
leads to the corresponding 3-pyrroline 16.12

To conclude, we have identified a novel anion mediated
condensation and fragmentation reaction of azabicy-

Scheme 2. Working hypothesis for the condensation of azabi-
cyclo[2.2.1]heptenones with aldehydes.

clo[2.2.1]heptene ring systems. Our current efforts are
focused on further evaluating the scope of this reaction
as well as its use in the synthesis of pyrroline containing
natural products.
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1:4a8412Et4

i-Pr 135 60 1:18a

CO2Et 146 1:4b83
t-Bu7 – –c

a From 1H NMR integration of the vinyl signals.
b From 1H NMR integration of the methyl ester signals.
c Product was methylated 8.
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